
Week 11 - Friday

 What did we talk about last time?
 Low-level file I/O
 Networking

Besides a mathematical inclination, an exceptionally good
mastery of one's native tongue is the most vital asset of a
competent programmer.

Edsger Dijkstra

 The OSI model is sort of a sham
 It was invented after the Internet was already in use
 You don't need all layers
 Some people think this categorization is not useful

 Most network communication uses TCP/IP
 We can view TCP/IP as five layers:

Layer Action Responsibilities Protocols

Application Prepare messages User interaction HTTP, FTP, etc.

Transport Convert messages to segments Sequencing, reliability, error correction TCP or UDP

Internet Convert segments to packets Flow control, routing IP

Link Convert packets to frames
Point-to-point communication between
devices on the same network

Ethernet, Wi-Fi

Physical Transmit frames as bits Data communication

 A TCP/IP connection between two hosts (computers) is
defined by four things
 Source IP
 Source port
 Destination IP
 Destination port

 One machine can be connected to many other machines, but
the port numbers keep it straight

 Certain kinds of network communication are usually done on
specific ports
 20 and 21: File Transfer Protocol (FTP)
 22: Secure Shell (SSH)
 23: Telnet
 25: Simple Mail Transfer Protocol (SMTP)
 53: Domain Name System (DNS) service
 80: Hypertext Transfer Protocol (HTTP)
 110: Post Office Protocol (POP3)
 443: HTTP Secure (HTTPS)

 Computers on the Internet have addresses, not names
 Google.com is actually [74.125.67.100]
 Google.com is called a domain
 The Domain Name System or DNS turns the name into an

address

 Old-style IP addresses are in this form:
 74.125.67.100

 4 numbers between 0 and 255, separated by dots
 That’s a total of 2564 = 4,294,967,296 addresses
 But there are 8 billion people on earth …

 IPv6 are the new IP addresses that are beginning to be used
by modern hardware
 8 groups of 4 hexadecimal digits each
 2001:0db8:85a3:0000:0000:8a2e:0370:7334

 1 hexadecimal digit has 16 possibilities
 How many different addresses is this?
 1632 = 2128 ≈ 3.4×1038 is enough to have 500 trillion addresses for

every cell of every person’s body on Earth
 Will it be enough?!

 Netcat (nc) is a very useful tool for testing networking
 It allows you to interact with network communications

through stdin and stdout
 You can run nc as either a client or a server

 We can run nc as a client, connecting to some waiting server:

 Then, we can type in a command that server is expecting

 We should see the webpage response from Google

nc google.com 80

GET / HTTP/1.0

 Alternatively, we can use nc as a server to see what a client
does when it tries to connect
 Which can be useful when trying to understand HTTP

 Now, we can type 127.0.0.1:30000 into the address bar
of a web browser
 127.0.0.1 is a the special loopback IP address that means "this

computer"
 30000 is the port that nc is listening on (in this case)

nc –l 30000

 We can even use nc as both a client and a server just for the
hell of it

 In one terminal, start nc as a server:

 In another terminal, connect nc as a client to that server:

 Now, send stuff back and forth!

nc –l 50000

nc 127.0.0.1 50000

 Sockets are the most basic way to send data
over a network in C

 A socket is one end of a two-way
communication link between two programs
 Just like you can plug a phone into a socket in

your wall (if you are living in 1980)
 Both programs have to have a socket
 And those sockets have to be connected to each

other
 Sockets can be used to communicate within

a computer, but we'll focus on Internet
sockets

 There are a lot of includes you'll need to get your socket
programming code working correctly

 You should always add the following:
 #include <netinet/in.h>
 #include <netdb.h>
 #include <sys/socket.h>
 #include <sys/types.h>
 #include <arpa/inet.h>
 #include <unistd.h>

 If you want to create a socket, you can call the socket() function
 The function takes a communication domain
 Will always be AF_INET for IPv4 Internet communication

 It takes a type
 SOCK_STREAM usually means TCP
 SOCK_DGRAM usually means UDP

 It takes a protocol
 Which will always be 0 for us

 It returns a file descriptor (an int)

int sockFD = socket(AF_INET, SOCK_STREAM, 0);

 What are you going to do with it?
 By themselves, they aren't useful
 You need to connect them together
 We're going to be interested in the following functions to work with sockets
 bind()
 listen()
 accept()
 connect()

 And we can also use functions from low-level file I/O
 read()
 write()
 close()
 Note that different functions are needed to read and write in UDP, but we'll just be

doing TCP

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

read()

write()

close()

Repeat until done

Server Client

 We'll start with the client, since the code is simpler
 Assuming that a server is waiting for us to connect to it, we can do

so with the connect() function
 It takes
 A socket file descriptor
 A pointer to a sockaddr structure
 The size of the sockaddr structure

 It returns -1 if it fails

connect(sockFD, (struct sockaddr *) &address,
sizeof(address));

 We fill a sockaddr_in structure with
 The communication domain
 The correct endian port
 The translated IP address

 We fill it with zeroes first, just in case

struct sockaddr_in address;
memset(&address, 0, sizeof(address));
address.sin_family = AF_INET;
address.sin_port = htons(80);
inet_pton(AF_INET, "173.194.43.0", &(address.sin_addr));

 Once you've created your socket, set up your port and address, and called
connect(), you can send data
 Assuming there were no errors
 Sending is just like writing to a file

 The write() function takes
 The socket file descriptor
 A pointer to the data you want to send
 The number of bytes you want to send

 It returns the number of bytes sent

char* message = "Flip mode is the squad!";
write(socketFD, message, strlen(message)+1);

 Or, once you're connected, you can also receive data
 Receiving is just like reading from a file

 The read() function takes
 The socket file descriptor
 A pointer to the data you want to receive
 The size of your buffer

 It returns the number of bytes received, or 0 if the connection is
closed, or -1 if there was an error

char message[100];
read(socketFD, message, 100);

 Sending and receiving are the same on servers, but setting up
the socket is more complex

 Steps:
1. Create a socket in the same way as a client
2. Bind the socket to a port
3. Set up the socket to listen for incoming connections
4. Accept a connection

 Binding attaches a socket to a particular port at a particular IP address
 You can give it a flag that automatically uses your local IP address, but it could be an issue if you have

multiple IPs that refer to the same host
 Use the bind() function, which takes
 A socket file descriptor
 A sockaddr pointer (which will be a sockaddr_in pointer for us) giving the IP address and port
 The length of the address

struct sockaddr_in address;
memset(&address, 0, sizeof(address));
address.sin_family = AF_INET;
address.sin_port = htons(80);
address.sin_addr.s_addr = INADDR_ANY;
bind(socketFD, (struct sockaddr*)&address, sizeof(address));

 After a server has bound a socket to an IP address and a port, it
can listen on that port for incoming connections

 To set up listening, call the listen() function
 It takes
 A socket file descriptor
 The size of the queue that can be waiting to connect

 You can have many computers waiting to connect and handle
them one at a time

 For our purpose, a queue of size 1 often makes sense

listen(socketFD, 1);

 Listening only sets up the socket for listening
 To actually make a connection with a client, the server has to call accept()
 It is a blocking call, so the server will wait until a client tries to connect
 It takes
 A socket file descriptor
 A pointer to a sockaddr structure that will be filled in with the address of the person connecting to you
 A pointer to the length of the structure

 It returns a file descriptor for the client socket
 We will usually use a sockaddr_storage structure

struct sockaddr_storage otherAddress;
socklen_t otherSize = sizeof(otherAddress);
int otherSocket = accept(socketFD, (struct sockaddr *)
&otherAddress, &otherSize);

 The setsockopt() function allows us to set a few options
on a socket

 The only one we care about is the SO_REUSEADDR option
 If a server crashes, it will have to wait for a timeout (a minute

or so) to reconnect on the same port unless this option is set
 A dead socket is taking up the port

int value = 1; //1 to turn on port reuse
setsockopt(socketFD, SOL_SOCKET, SO_REUSEADDR, &value,
sizeof(value));

 This is the basic sockaddr used by socket functions:

 We often need sockaddr_in:

 They start with the same bytes for family, we can cast without a problem
 C has no inheritance, we can't use a child class

struct sockaddr {
unsigned short sa_family; //address family
char sa_data[14]; //14 bytes of address

};

struct sockaddr_in {
short sin_family; // AF_INET
unsigned short sin_port; // e.g. htons(3490)
struct in_addr sin_addr; // 4 bytes
char sin_zero[8]; // zero this

};

 Let's make a client and connect it to nc acting as a server
 We'll just print everything we get to the screen

 Let's make a server and connect to it with nc
 We'll just print everything we get to the screen

 Finish networking
 File systems

 Work on Project 5
 Read Chapters 14 and 15 of LPI

	COMP 2400
	Last time
	Questions?
	Project 5
	Quotes
	TCP/IP
	TCP/IP
	Common port numbers
	IP addresses
	IPv4
	IPv6
	Netcat
	nc as a client
	nc as a server
	nc as both!
	Sockets
	Sockets
	Includes
	socket()
	Now you've got a socket…
	Slide Number 21
	Client
	Making an address for a client
	Sending
	Receiving
	Servers
	Bind
	Listening
	Accept
	setsockopt()
	Why do we cast to sockaddr*?
	Example 1
	Example 2
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

